Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Strong and weak coupling of single quantum dot excitons in pillar microcavities

Identifieur interne : 000285 ( Russie/Analysis ); précédent : 000284; suivant : 000286

Strong and weak coupling of single quantum dot excitons in pillar microcavities

Auteurs : RBID : Pascal:06-0412625

Descripteurs français

English descriptors

Abstract

We report on strong as well as weak coupling of self assembled In0.30Ga0.70As quantum dots (QDs) in high-Q semiconductor micropillar cavities grown by molecular beam epitaxy. Using electron beam lithography and deep plasma etching, micropillars with high Q-factors (about 10000 for 1.6 μm diameter) were realized. The low QD density in the present structures allows us to investigate the interaction of single QD excitons and the vacuum field of the microcavity by temperature tuning of exciton lines into resonance with the cavity mode. We will present an example where QD excitons with different emission energies show strong or weak coupling with the optical mode of the same micropillar at different resonance temperatures. Here, the individual coupling behaviour is described in terms of a different spatial position of the QDs relative to the field maximum of the cavity mode.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:06-0412625

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Strong and weak coupling of single quantum dot excitons in pillar microcavities</title>
<author>
<name sortKey="Reitzenstein, S" uniqKey="Reitzenstein S">S. Reitzenstein</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Technische Physik, Universität Würzburg, Am Hubland</s1>
<s2>Würzburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Basse-Franconie</region>
<settlement type="city">Wurtzbourg</settlement>
</placeName>
<orgName type="university">Université de Wurtzbourg</orgName>
</affiliation>
</author>
<author>
<name sortKey="Hofmann, C" uniqKey="Hofmann C">C. Hofmann</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Technische Physik, Universität Würzburg, Am Hubland</s1>
<s2>Würzburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Basse-Franconie</region>
<settlement type="city">Wurtzbourg</settlement>
</placeName>
<orgName type="university">Université de Wurtzbourg</orgName>
</affiliation>
</author>
<author>
<name sortKey="Loffler, A" uniqKey="Loffler A">A. Löffler</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Technische Physik, Universität Würzburg, Am Hubland</s1>
<s2>Würzburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Basse-Franconie</region>
<settlement type="city">Wurtzbourg</settlement>
</placeName>
<orgName type="university">Université de Wurtzbourg</orgName>
</affiliation>
</author>
<author>
<name sortKey="Kubanek, A" uniqKey="Kubanek A">A. Kubanek</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Technische Physik, Universität Würzburg, Am Hubland</s1>
<s2>Würzburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Basse-Franconie</region>
<settlement type="city">Wurtzbourg</settlement>
</placeName>
<orgName type="university">Université de Wurtzbourg</orgName>
</affiliation>
</author>
<author>
<name sortKey="Reithmaier, J P" uniqKey="Reithmaier J">J.-P. Reithmaier</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Technische Physik, Universität Würzburg, Am Hubland</s1>
<s2>Würzburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Basse-Franconie</region>
<settlement type="city">Wurtzbourg</settlement>
</placeName>
<orgName type="university">Université de Wurtzbourg</orgName>
</affiliation>
</author>
<author>
<name sortKey="Kamp, M" uniqKey="Kamp M">M. Kamp</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Technische Physik, Universität Würzburg, Am Hubland</s1>
<s2>Würzburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Basse-Franconie</region>
<settlement type="city">Wurtzbourg</settlement>
</placeName>
<orgName type="university">Université de Wurtzbourg</orgName>
</affiliation>
</author>
<author>
<name sortKey="Kulakovskii, V D" uniqKey="Kulakovskii V">V. D. Kulakovskii</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute of Solid State Physics, RAS</s1>
<s2>Chemogolovka</s2>
<s3>RUS</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>Chemogolovka</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Keldysh, L V" uniqKey="Keldysh L">L. V. Keldysh</name>
<affiliation wicri:level="3">
<inist:fA14 i1="03">
<s1>Lebedev Physical Institute, RAS</s1>
<s2>Moscow</s2>
<s3>RUS</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Reinecke, T L" uniqKey="Reinecke T">T. L. Reinecke</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Naval Research Laboratory</s1>
<s2>Washington DC</s2>
<s3>USA</s3>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Naval Research Laboratory</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Forchel, A" uniqKey="Forchel A">A. Forchel</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Technische Physik, Universität Würzburg, Am Hubland</s1>
<s2>Würzburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Basse-Franconie</region>
<settlement type="city">Wurtzbourg</settlement>
</placeName>
<orgName type="university">Université de Wurtzbourg</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">06-0412625</idno>
<date when="2006">2006</date>
<idno type="stanalyst">PASCAL 06-0412625 INIST</idno>
<idno type="RBID">Pascal:06-0412625</idno>
<idno type="wicri:Area/Main/Corpus">008A11</idno>
<idno type="wicri:Area/Main/Repository">008360</idno>
<idno type="wicri:Area/Russie/Extraction">000285</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0370-1972</idno>
<title level="j" type="abbreviated">Phys. status solidi, B, Basic res.</title>
<title level="j" type="main">Physica status solidi. B. Basic research</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Electron beam lithography</term>
<term>Excitons</term>
<term>Gallium arsenides</term>
<term>III-V semiconductors</term>
<term>Indium arsenides</term>
<term>Microcavities</term>
<term>Molecular beam epitaxy</term>
<term>Plasma etching</term>
<term>Quantum dots</term>
<term>Self-assembled layers</term>
<term>Semiconductor materials</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Exciton</term>
<term>Epitaxie jet moléculaire</term>
<term>Lithographie faisceau électron</term>
<term>Gravure plasma</term>
<term>Microcavité</term>
<term>Point quantique</term>
<term>Couche autoassemblée</term>
<term>Semiconducteur</term>
<term>Indium arséniure</term>
<term>Gallium arséniure</term>
<term>Semiconducteur III-V</term>
<term>7867H</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We report on strong as well as weak coupling of self assembled In
<sub>0.30</sub>
Ga
<sub>0.70</sub>
As quantum dots (QDs) in high-Q semiconductor micropillar cavities grown by molecular beam epitaxy. Using electron beam lithography and deep plasma etching, micropillars with high Q-factors (about 10000 for 1.6 μm diameter) were realized. The low QD density in the present structures allows us to investigate the interaction of single QD excitons and the vacuum field of the microcavity by temperature tuning of exciton lines into resonance with the cavity mode. We will present an example where QD excitons with different emission energies show strong or weak coupling with the optical mode of the same micropillar at different resonance temperatures. Here, the individual coupling behaviour is described in terms of a different spatial position of the QDs relative to the field maximum of the cavity mode.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0370-1972</s0>
</fA01>
<fA02 i1="01">
<s0>PSSBBD</s0>
</fA02>
<fA03 i2="1">
<s0>Phys. status solidi, B, Basic res.</s0>
</fA03>
<fA05>
<s2>243</s2>
</fA05>
<fA06>
<s2>10</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Strong and weak coupling of single quantum dot excitons in pillar microcavities</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Papers presented at the 8th International Workshop on Nonlinear Optics and Excitation Kinetics in Semiconductors (NOEKS 8)</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>REITZENSTEIN (S.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HOFMANN (C.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LÖFFLER (A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>KUBANEK (A.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>REITHMAIER (J.-P.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>KAMP (M.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>KULAKOVSKII (V. D.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>KELDYSH (L. V.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>REINECKE (T. L.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>FORCHEL (A.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>KUHN (Tilmann)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Technische Physik, Universität Würzburg, Am Hubland</s1>
<s2>Würzburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institute of Solid State Physics, RAS</s1>
<s2>Chemogolovka</s2>
<s3>RUS</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Lebedev Physical Institute, RAS</s1>
<s2>Moscow</s2>
<s3>RUS</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Naval Research Laboratory</s1>
<s2>Washington DC</s2>
<s3>USA</s3>
<sZ>9 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Institute of Solid State Theory, University of Münster, Wilhelm-Klemm-Strasse 10</s1>
<s2>48149 Münster</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA20>
<s1>2224-2228</s1>
</fA20>
<fA21>
<s1>2006</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>10183B</s2>
<s5>354000157005870020</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2006 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>11 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>06-0412625</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physica status solidi. B. Basic research</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We report on strong as well as weak coupling of self assembled In
<sub>0.30</sub>
Ga
<sub>0.70</sub>
As quantum dots (QDs) in high-Q semiconductor micropillar cavities grown by molecular beam epitaxy. Using electron beam lithography and deep plasma etching, micropillars with high Q-factors (about 10000 for 1.6 μm diameter) were realized. The low QD density in the present structures allows us to investigate the interaction of single QD excitons and the vacuum field of the microcavity by temperature tuning of exciton lines into resonance with the cavity mode. We will present an example where QD excitons with different emission energies show strong or weak coupling with the optical mode of the same micropillar at different resonance temperatures. Here, the individual coupling behaviour is described in terms of a different spatial position of the QDs relative to the field maximum of the cavity mode.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H67H</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Exciton</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Excitons</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Epitaxie jet moléculaire</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Molecular beam epitaxy</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Lithographie faisceau électron</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Electron beam lithography</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Gravure plasma</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Plasma etching</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Grabado plasma</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Microcavité</s0>
<s5>11</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Microcavities</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Point quantique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Quantum dots</s0>
<s5>15</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Couche autoassemblée</s0>
<s5>16</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Self-assembled layers</s0>
<s5>16</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Semiconducteur</s0>
<s5>17</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Semiconductor materials</s0>
<s5>17</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Indium arséniure</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Gallium arséniure</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>48</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>48</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>7867H</s0>
<s4>INC</s4>
<s5>60</s5>
</fC03>
<fN21>
<s1>275</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>NOEK International Workshop on Nonlinear Optics and Excitation Kinetics in Semiconductors</s1>
<s2>8</s2>
<s3>Münster DEU</s3>
<s4>2006-02-20</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Russie/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000285 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Russie/Analysis/biblio.hfd -nk 000285 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Russie
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:06-0412625
   |texte=   Strong and weak coupling of single quantum dot excitons in pillar microcavities
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024